11,124 research outputs found

    Fund Flows and Commercial Real Estate Investment: Evidence from the Commercial Mortgage Market

    Get PDF
    This paper addresses the issue of the impact of fund flows on real investment. In the classical world, fund flows affect investment by changing the cost of funds or through the weighted average cost of capital. In a less perfect world, fund flows can directly alter investment though a rationing mechanism, where even presumably profitable investment is choked off. This paper examines the commercial mortgage market over the last quarter century. The findings indicate an effect of constrained flows on investment in the early 1990s, but an independent impact of higher flows to the commercial mortgage market in the middle 1980s is not found.

    eXtended Variational Quasicontinuum Methodology for Lattice Networks with Damage and Crack Propagation

    Get PDF
    Lattice networks with dissipative interactions are often employed to analyze materials with discrete micro- or meso-structures, or for a description of heterogeneous materials which can be modelled discretely. They are, however, computationally prohibitive for engineering-scale applications. The (variational) QuasiContinuum (QC) method is a concurrent multiscale approach that reduces their computational cost by fully resolving the (dissipative) lattice network in small regions of interest while coarsening elsewhere. When applied to damageable lattices, moving crack tips can be captured by adaptive mesh refinement schemes, whereas fully-resolved trails in crack wakes can be removed by mesh coarsening. In order to address crack propagation efficiently and accurately, we develop in this contribution the necessary generalizations of the variational QC methodology. First, a suitable definition of crack paths in discrete systems is introduced, which allows for their geometrical representation in terms of the signed distance function. Second, special function enrichments based on the partition of unity concept are adopted, in order to capture kinematics in the wakes of crack tips. Third, a summation rule that reflects the adopted enrichment functions with sufficient degree of accuracy is developed. Finally, as our standpoint is variational, we discuss implications of the mesh refinement and coarsening from an energy-consistency point of view. All theoretical considerations are demonstrated using two numerical examples for which the resulting reaction forces, energy evolutions, and crack paths are compared to those of the direct numerical simulations.Comment: 36 pages, 23 figures, 1 table, 2 algorithms; small changes after review, paper title change

    The Living ROMP of trans-Cyclooctene

    Get PDF
    The living ring-opening metathesis polymerization (ROMP) of trans-cyclooctene (tCO) was investigated. ROMP of tCO in the presence of PPh_3 in THF leads to the formation of narrowly dispersed polycyclooctene (PCO). The presence of PPh3 as an additive and the use of THF as a solvent were demonstrated to be necessary to suppress competing secondary metathesis processes in the ROMP of tCO. Under optimal conditions, narrowly dispersed PCO was achieved without high molecular weight contaminates. The PCO was then hydrogenated to form linear, narrowly dispersed polyethylene with a melting temperature of 139 °C. Protected, hydroxy-functionalized tCO was polymerized by this method to afford narrowly dispersed, hydroxylated PCO. Block copolymers containing polynorbornene and PCO or containing differentially functionalized PCO were also synthesized and hydrogenated to form block copolymers containing blocks of linear, narrowly dispersed polyethylene

    Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium

    Get PDF
    Microbial consortia form when multiple species colocalize and communally generate a function that none is capable of alone. Consortia abound in nature, and their cooperative metabolic activities influence everything from biodiversity in the global food chain to human weight gain. Here, we present an engineered consortium in which the microbial members communicate with each other and exhibit a “consensus” gene expression response. Two colocalized populations of Escherichia coli converse bidirectionally by exchanging acyl-homoserine lactone signals. The consortium generates the gene-expression response if and only if both populations are present at sufficient cell densities. Because neither population can respond without the other's signal, this consensus function can be considered a logical AND gate in which the inputs are cell populations. The microbial consensus consortium operates in diverse growth modes, including in a biofilm, where it sustains its response for several days

    The Mechanics of Judicial Vote Switching

    Get PDF
    In a handful of cases, including one from last Term, the United States Supreme Court was divided between upholding, remanding, and overturning a lower court decision, with no majority in favor of any of these three dispositions. In each of these cases, at least one Justice switched his or her vote to achieve a majority. With the Supreme Court taking ever fewer cases and producing increasingly complicated split decisions, we may expect this pattern to recur more often. This Article, drawing upon game theory and public choice scholarship, addresses how and why this practice of strategic vote switching emerged

    A Variational Formulation of Dissipative Quasicontinuum Methods

    Get PDF
    Lattice systems and discrete networks with dissipative interactions are successfully employed as meso-scale models of heterogeneous solids. As the application scale generally is much larger than that of the discrete links, physically relevant simulations are computationally expensive. The QuasiContinuum (QC) method is a multiscale approach that reduces the computational cost of direct numerical simulations by fully resolving complex phenomena only in regions of interest while coarsening elsewhere. In previous work (Beex et al., J. Mech. Phys. Solids 64, 154-169, 2014), the originally conservative QC methodology was generalized to a virtual-power-based QC approach that includes local dissipative mechanisms. In this contribution, the virtual-power-based QC method is reformulated from a variational point of view, by employing the energy-based variational framework for rate-independent processes (Mielke and Roub\'i\v{c}ek, Rate-Independent Systems: Theory and Application, Springer-Verlag, 2015). By construction it is shown that the QC method with dissipative interactions can be expressed as a minimization problem of a properly built energy potential, providing solutions equivalent to those of the virtual-power-based QC formulation. The theoretical considerations are demonstrated on three simple examples. For them we verify energy consistency, quantify relative errors in energies, and discuss errors in internal variables obtained for different meshes and two summation rules.Comment: 38 pages, 21 figures, 4 tables; moderate revision after review, one example in Section 5.3 adde
    corecore